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1. INTRODUCTION

The usual mixed linear model discussed in the literature on

B 1 ] LU (

where X, Ul.....Up are known matrices, B is a fixed unknown

vector parameter and 01""’°p' € are unobservable random

variables (r.v.'s) such that

E(e) = 0, E@)) =0, E(4,6)) =0, 14}, E(es)) =0

0_2 0_2
E(ee') ooln. E(¢1¢1) oilni' 1.2)

The unknown parameters oi, ai...., ai are called variance components.

Some of the early uses of such models are due to Yates and
Zacopancy (1935) and Cochran (1939) in survey sampling, Yates (1940)
and Rao (1947, 1956) in combiﬁing intra and interblock information
in design of experiments, Fairfield Smith (1936), Henderson (1950),
Panse (1946) and Rao (1953) in the construction of selection indices
in genetics, and Brownlee (1953) in industrial applications. A
3 systematic study of the estimation of variance components was under-

taken by Henderson (1953) who proposed three methods of estimation.

The general approach in all these papers was to obtain p+l
quadratic functions of Y, say Y'QiY. 1 =1,...,pt]1, which are
invariant for translation of Y by Xa where a 1s arbitrary,

and solve the equations

1‘1




g +a 02+...+a 02 (1.3)

\ - ' -
- Y'QY E(YoiY) a 11%1 i

§ 1o’

i= 0,1,.-..9.

The method of choosing the quadratic forms was intuitive in nature

(see Henderson, 1953) and did not depend on any stated criteria of
estimation. The entries in the ANOVA table giving the sums of

squares due to different effects were considered as good choices

of the quadratic forms in general. The ANOVA technique provides

good estimators in what are called balanced designs (see R. L. Anderson,
1975 and R, L. Anderson and P, P, Crump, 1967) but, as shown by

Seely (1975) such estimators may be inefficient in more general linear
models. For a general discussion of Henderson's methods and their
advantages (computational simplicity) and limitations (lack of

uniqueness, inapplicability and inefficiency in special cases) the

reader is referred to papers by Searle (1968, 1971), Seely (1975),

Olsen, Sealy and Birkes (1976) and Harville (1977, p. 335).

A completely different approach is the ML (maximum likelihood)
method initiated by Haftley and Rao (1967). They considered the
likelihood of the unknéwn parameters 8, og,...,oi based on observed
Y and obtained the likélihood equations by computing the derivatives
of likelihood with respect to the parameters. Patterson and Thompson
(1975) considered the marginal l1ikelihood based on the maximal
invariant of Y, i.e., only on B'Y where B 1is a matrix orthogonal
to X and obtained what are called restricted maximum likelihood (RML)

equations. Harville (1977) has given a review of the ML and RML
methods and the computational algorithms associated with them.

“One criticism of the ML estimators is that they may be heavily

biased so that some caution is needed when they are used as estimates




of individual parameters for taking decisions or for using them
in the place of true values to obtain an efficient estimate of 8.
The problem is not accute if the exact distribution of the ML
estimators is known, since in that case appropriate adjustments
can be made in the individual estimators before using them. The
;oncr;l large sample properties associated with ML estimators are
misleading in the absence of studies on the orders of sample sizes
for which these properties hold in particular cases.

The bias in RML estimators may not be large even in small
samples. But both ML and RML estimators are functions of B'Y,
the maximal invariant of Y, and there are important practical cases
where reduction of Y to B'Y results in non-identifiability of
individual parameters, in which case neither ML nor RML is applicable.
The details are given in Section 5.

Rao (1970, 1971a, 1971b, 1972, 1973) proposed a general method
called MINQE (Minimum norm quadratic estimation) the scope of which
has been extended to cover a variety of situations by Focke and Dewess
(1972), Kleffe (1975, 1976, 1977a,b, 1978, 1979), J. N. K. Rao (1973),
Fuller and Rao (1978), Pduri Rao and Chaubey (1978), Pukelsheim (1977,
1978), Sinha and Wieand (1977) and Rao (1979). The method is applicable

to a general linear model

- ' -
Y=X8+¢, E(ec') 01V1+...+9PVp (1.4)

where no structure need be imposed on ¢ and no restrictions are
placed on 01 or Vi. (In the model (1.1), 01 >0 and v1 are
non-negative definite).

“ In the MINQE theory, we define what is called a natural estimator

1.3




of a linear function f'6 of 0 din terms of the unobservable r.v,

e in (1.;). say c'Ne. Then the estimator Y'AY i4n terma of the
observable r.v. Y i3 obtained by minimizing the norm of the difference
between the quadratic forms e¢'Ne and Y'AY = (X8 + ¢)'A(XB + ¢€).

The universality of the MINQEmethod arises from the following

ohsorvations:

(a) It offers a wide scope in the choice of the norm depending
on the nature of the model and prior information available,
(b) One or more restrictions such as invariance, unbiasedneas
and non-negative definiteness can be placed on Y'AY
| depending on the desired properties of the estimators. '
(c) The method is applicable is situations where ML and RML fail.
(d) There is an automatic provision for incorporating available
prior information on the unknown parameters B and 6.
(e) Further,ML and RML estimators can be exhibited as iterated
versions of suitably chosen MINQRS.
(f) The MINQEequation provides a natural numerical algorithm for
computing the ML or RML estimator.
() For a suitable chnice of the norm, the MINQ estimators provide
minimum variance estimators of 6 when Y 1is normally

distributed.

It has been mentioned by some reviewers of the MINQE theory that
the computations needed for obtaining the MINQ estimators are somewhat
heavy. It is true that the closed form expressions given for MINQE's
contain inverses of large order matrices, but they can be computed in

a simple way in special cases that arise in practice. The computations




in such cases are of the same order of magnitude as obtaining sums
of squares in the ANOVA table appropriate for the linear model.
Perhaps, some research is needed in developing simple numerical
algorithms in more complicated cases. It is certainly not true
that the computation of MLE or RMLE is simpler than that of MINQE,

Both may have the same order of complexity in the general case.

1.5
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2. MODELS OF VARIANCE AND COVARIANCE COMPONENTS

2.1 General Model

There is a large variety of models of variance and covariance
components used in research work in biological and behavioral sciences.
They can all be considered in a unified frame work under a general

Gauss-Markoff (GM) model

Y=XB8+ ¢ (2.1.1)

where Y is n-vector random variable, X is nx m matrix, g 1is

m-vector parameter and ¢ is n-vector variable. The models differ

mainly in the structure imposed on ¢. The most general formulation is
E(e) = 0 (2.1.2)

- +oo.+ = - ede
D(e) 01V1 onP v(8) Ve (2.1.3)

vhere D stands for the dispersion (variance covariance) matrix,
= (01.....0P) is unknown vector parameter and Vl.....Vp are
known symmetric matrices. We let BeR™ and o¢F (open set) C RrP
such that V(8) > 0 (i.e., nonnegative definite). In the representation
(2.1.3) we have not imposed any restriction such as 6, 20 or V1 is
v nonnegative definite.
It may be noted that any arbitrary n x n dispersion matrix
6= (ou) can be written in the form (2.1.3)

z:e“vu (2.1.4)

, involving & maximum of p = n(n-1)/2 unknown parameters 6, y and

: known matrices V“. but in models of practical interest p has a




relatively small value compared to n.

2.2 Variance Components
A special case of the variance components model is when ¢ has

the structure

e ™ U101+"'+UPOP (202‘1)
vhere Ui is n x n, given matrix and 01 is m -vector r.v. such
that

E(0,) = 0, E(o,0]) = 0 143, EChy8)) = afxmi. (2.2.2)

In such a case

v(e) = elv1+...+opvp (2.2.3)
vhere V, = uiui 20 and 6, oi > 0. Most of the models discussed

in literature are of the type (2.2.1) leading to (2.2.3).
In the classical regression model p = 1. Other examples are one
and two way classification models with fixed and random effects,

The complete GM model when € has the structure (2.2.1) is

Y XE Uy b g
E(4y) = 0; E(4,;4)) = 0 463 E(h,9]) = o]T, . (2.2.4)
™

The associated statistical problems are:
(a) Estimation of 8
(b) Estimation of o:, 1= 1,...,p

(c) Estimation of 01. i=1,...,p. (2.2.5)

2.2
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The last problem arises in the construction of selection indices in

genetics, and some early papers on the subject providing a satisfactory
solution are due to Fairfield Smith (1936), “anse (1946) based on an
idea suggested by Fisher, and Henderson (1950). A theoretical
justification of the method employed by these authors and associated
tests of significance are given in Rao (1953).

A particular case of the model (2.2.4) is where it can be broken

down into a number of submodels

Yl - xls + cl.....Yp = xps + cp
where Yi is ni-vector variable and

E(ci) =0, E(eiei) = °1In1' E(cici) = 0.

Note that the B8 parameters are the same in all submodels, and in
some situations the design matrices xl.....xp may also be the same.
The model (2.2.6) with the covariance structure (2.2.7) is usually
referred to as one with "heteroscedastic variances' and the problem

of estimating B as that of estimating a 'common mean'.

2.3 Variance and Covariance Components
We assume the same structure (2.2.1) for ¢ but with different

covariances for the oi’a
E(.i) - o' E(.ioi) o Ail 1 - 1..oo.k
' 2
B(.i‘i) - 011. ’ 1 - k + lgoncgp
& -

E(4,0)) = 0, 14

2.3

(2.2.6)

(2.2.7)

(2.3.1)




oed i

leading to

- [ ] L} 2 (] 2 ]
v(e) U1A1U1+...+UkAkUk + ok+luk+luk+1+...+opupup (2.3.2)

where Ai > 0. In some practical problems Ai are all the same and

there is only one 02 in which case (2.3.1) becomes

V(6) = U AUJ+.. HU AL + ol1. (2.3.3)

2.4 Random Regression Coefficients
This is a special case of the variance and covariance components

model considered in 2.3 where € has the structure

€= X0y + 4, E(@0]) = A, E(4y83) = o’ (2.4.1)

the compounding matrix for ¢1 being the same as for B leading to

the GM model

Y-xs+x¢1+¢2
D(e) = XAX' + o°I. (2.4.2)

In general, we have repeated observations on the model (2.4.2)

with different X's

Y1 - Xiﬁ + Xi¢11 + ¢21, 1= ],.06,t (2.4.3)

leading to the model

|
'
u

R dve ot




e —

9
|

with

D(e) = . (2.4.5)

all the off diagonal blocks being null matrices. A discussion of

such models is contained in Fisk (1967), Rao (1965, 1967), Swamy (1271},

and Spjotvoll (1977).

2.5 Intraclass Correlation Model

We shall illustrate an intraclass correlation model with special

reference to two way classified data ek wa“ﬂa-‘» T Ty
yijk’ 2 IS L C e [ AR ) R PO (2.5.1)
We write
Yj}k = uijk + eijk (2.5.2)
where "1jk are fixed parameters with a specified structnre, an’
2 2
E(e“k) 0, E“ijk) o
E(e,, €., ) = azp rés
ijrijs L
E(e,,. €., ) = ozp Jfk, rés (2.3.39
ijr iks 2" * bl
E(e,,. €. ) = ozo ide, ¥k, ree
ijr tks 3F y t i

This dispersion matrix of (Yijk) can be exhibited in the frin

(2.1.3) with four parameters 02, Pys Pps 93. A model of the -vpe

2.5
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(2.5.2) is given in Rao (1973, p. 258).

2.6 Multivariate Model

A k=-variate linear model is of the form

(YI:...:Yk) - x(Bl:....Bk) + (clz...:ck)

E(c,e') = oMy 4. 4P

14 13 1 14 Vp. (2.6.1)

Denoting Y = (Yi.....Yi). ) (Bi.....si). €= (ci.....eé). the

multivariate model may be written as a univariate model

Y= (I®XE +¢

P
EEE") = I (0, ®V,) (2.6.2)
i=1

where 91 are (kxk) matrices of variance and covariance components.

In the multivariate regression model p = 1, in which case

E(®E') = 0@ v.

(2.6.3)
We may specify structures for ¢ analogous to (2.2.1) in tie
univariate case
Ci - U1°1i+-oo+up¢pip 1 - 1|o.|‘k
EG, ¢' ) = o™ Es, 6!.) =0 res (2.6.4)
im’ §m 13 * ey : e

For special choices of Ui' we obtain multivariate one, two,...way

mixed models.

-

2.6
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Models of the type (2.6.2) have been considered by Krishnaiah
and Lee (1974). They discuss methods of estimating the covariance

matrices 91 and testing the hypothesis that a covariance matrix

D

has the structure (2.6.2).
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3. ESTIMABILITY

3.1 Unbiasedness

Let us consider the univariate GM model (2.1.1) with the

covariance structure (2.1.3)

Y=X8+€, D(c) = 01V1+...#OPVP (3.1.1) %

and find the conditions under which linear functions £'6 can be

estimated by functions of Y subject to some constraints. The

classes of estimators considered are as follows:

Q = {Y'AY, A symmetric} (3.1.2)
Ug = {g(¥): E[g(V)] = £'0 ¥ BeR™, 0¢F) (3.1.2)
T = {g(Y) = g(Y + Xa)} (3.1.3)

Theorem 3.1.1 provides conditions for unbiased estimability.

)
Theorem 3.1.1. Let the linear model be as in (3.1.1). Then: y
ﬁ

(1) The estimator Y'AY 1is unbiased for y = f'0 iff

X'AX = o. tr Avi - fi’ {= 1...'.p. (3-1-5)
(11) There exists an unbiased estimator ;eQ 1ff feS(H), i;
He= (hij)’ hij - tr(Vivj - PViPVj) (3.1.6)

wvhere P 1is the projection operator onto S(X).

(114) If Y has multivariate normal distribution, then Ufr\ Q0 1is

not empty.




The results (i) and (11) are discussed in Seely (1970), Rao (1970,

1971) and Focke and Dowess (1972) and (i111) in Pincus (1974).

Note 1: Result (ii) holds if in (3.1.6) we choose

hij - tr(Vi(I - P)Vj). : (3.1.7)

Note 2: In the special case vivj =0 for 149, 9i, the i-th
individual parameter,is unbiasedly estimable iff MV1 ¢ 0 where

M=s]I-P,

Lemma 3.1.1. The linear space ' of all unbiasedly estimable

linear functions of 0 is

i "AY: A & -
r {§ Y'AY:A € sp(V1 PVlP,...,Vp PVpP)} (3.1.8)

where ap(Al,...,Ap) is the set of all linear combinations of

Al.-. . .Apo

Let us consider the multivariate model (2.6.2) written in a vector
form
Yo (1QX)B + ¢

E(EE') = 0, @V +...+ Gp ®v’ (3.1.9)

where 91 are kXk matrix variance-covariance components.

Lemma 3.1.2. The parametric function Y = I £, trC 91 is

i
unbiasedly estimable from the model (3.1.9) {ff f£'0 1s so from

the univariate model (3.1.1).

3.2




Lemma 3.1.3. The class ! of unbiasedly estimable linear

functions of elements of 91, i=1,...,p in (3.1.9), is

are such that Hb = 0= I p,C, = 0}

C
i
ol ST T

= = 0 .
res{ys=_% trci T

where H 1is as defined in (3.1.6).

3.2 Invariance
|

An estimator is said to be invariant for translation of the parameter
B in the linear model (3.1.1) if it belongs to the class (3.1.4).
Theorem 3.2.1 provides the conditions under which estimators belonging

to the class ufn I exist.

S

Theorem 3.2.1. Let the linear model be as in (3.1.1). Then:

(1) The estimator Y'AY ¢ Uf{\ 1 1iff

AX =0, tr AV, =£, 1=1,...,p, (3.2.1)

(i1) There exists an unbiased estimator in class Q N I iff

fe I(HM) where
HM = (hij)’ hij = tt(HViMVj), M=1--P, (3.2.2)

(111) Under the assumption of normality of Y, the result (3.2.2)

can be extended to the class 1.
Note: In (3.2.2), we can choose

h,, = tr(BB'V

14 1BB'V3) (3.2.3)

where B 1s any choice of XL, i.e., B 1is a matrix of maximum

rank such that B'X = 0.

T AT D R | TN
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Lemma 3.2.1. The linear space of all invariantly unbiasedly

estimable linear functions of 6 is

Ty ® (g Y'MAMY: A ¢ ap(vl—PVIP.....Vp-PVpP)). (3.2.4)

Lemma 3.2.2. If £'6 1is invariantly unbiasedly estimable from

the model (3.1.1) then so 18 y = L f1 trC 91 from the model (3.1.9).

Lemma 3.2.3. All invariantly unbiasedly estimable linear functions
of the elements of 01,.... Gp in the model (3.1.9) belong to the

set

«{y=ItrCg 6,: C, are such that Hb = 0 = Ib,C, = 0}, (3.2.5)

Tur 1

Note: We can estimate any member of the class (3.2.5)

by functions of the form

y=13 tr(cJ Y'AJY) 1

where Al....,Ap are matrices arising in invariant quadratic unbiased

estimation in the univariate model (3.1.1). |

3.3 Examples

Consider the model with 4 observations
Y, =8 e Y, m8 tey, YymBitey, Y, "8 te,

wvhere ¢, are all uncorrelated and V(el) = V(Cg) - oi and

V(c£5 - V(c“) - c%. The matrices X, Vl. vy and P the projection

3.4




operator are easily seen to be

1 0 ;) 0 0 0 0 0 0 0
x-;s.vl-‘;ssg).vz-zzzz-
0 1 0 0 0 0 0 0 1 0
e —
i
oo-i—-;-

The matrices H and “M of Theorems 3.1.1 and 3.2.1 are

, Hy =

N N
= N

Since H 1is of full rank, 02 and 02 are individually unbiasedly

1 2
estimable. But “M is of rank one and the unit vectors do not
belong to the space S(HM) and therefore, oi and ai are not

individually unbiasedly estimable by invariant quadratic forms.

Consider the model Y = Xg + X¢ + ¢ where B 18 a fixed

vector parameter and ¢ 1s a vector of random effects such that

- ' - 2 ' s ' - 2
E(¢) = 0, E(¢¢") 0yl s E(¢c') = 0, E(ee') ojl,. Let
Y'AY be an unbilased estimate of 02. Then we must have

2

X 'AX =0, tr AXX' =1, trA =0

which 18 not consistent since X'AX = 0 mm) tr AXX' = 0, Hence

unblased estimators of og do not exist.

3.5 |




4, MINIMUM VARIANCE UNBIASED ESTIMATION-NORMAL CASE

4.0 Notations
In Section 3, we obtained conditions for unbiased estimability
of £'0 in the linear model

= - 0 o
Y = XB + €, D(€) 91V1+...+ pvp Ve

restricting the class of estimators to quadratic functions of Y.
In this section we do not put any restriction on the class of

estimators but assume that
Y - N_(XB,Vg), B¢ R", 6¢F

i.e., n variate normal, and Vg is p.d. for O €F, The
condition that Vé is p.d. is assumed to simplify presentation of
results, and is satisfied in many practical situations.

First, we derive the locally minimum variance unbiased estimator
(LMVUE) of f£'60 at a chosen point (30.90) in RXF. If the
estimator is independent of qo, 60 then we have a uniformly
minimum variance unbiased estimato; (UMVUE). Such estimators do
not exist except in simple cases. In the general case we suggest
the use of LMVUE vith a suitable choice of Bo’ 90 based on previous
experience or apriori considerations. We also indicate an iterative
method which starts with an initial value (qo.qo), gets an improved
set (B ,01?, and provides in the limit an iterated MVE.

LMVUE's are obtained in the class of quadratic estimators by
La Motte (1973) under the assumption of normality and by Rao (1971)

in the general case. Such estimators were designated by Rao as

(4.0.1)

(4.0.2)




MIVQUE (minimum variance quadratic unbiased estimator). In this
section we show that, under the normality assumption, MIVAQUF is

LMVUE in the whole class of unbiased estimators.

4.1 Locally Minimum Variance Unhiased Estimation

Definition 4.1.1. An estimator ;, 1s called LMVUE of {its

expected value at (Bo.eo) e RUXF  {ff

V(Y 18,,0) < v(r[8_,0 ) (4.1.1)

for all ; such that
E(Y,) = E(MVY (8,0)e R"XF, (4.1.2)

We use the following notations:

Ve - lel"‘. . .+epr

WEv, ey 1yl ML R
A1 Ve (V1 PeviPe)Ve, PO X(X ve)()x Ve

K =
o (tr Aivi)

1:6'e = [(Y-Xa)'Al(Y-XB),...,(Y-XB) 'Ap(v-xsn', (4.1.3)

Let (ao. eo) be an apriori value of (B,6). Then applying

the result (3.1.6) of Theorem 3.1.1 we find that f'0 {s

unbiasedly estimable iff

o

4.2




Theorem 5:1.1 provides an explicit expression for the LMVUE.

Theorem 4.1.1. Let f satisfy the condition (4.1.4) and Ko.

ks g be as defined in (4.1.3). Then the IMVUE of £'0 at (B ,6))
»

is

> = )Y - = v -
¥ A k“o"’o I A (Y-X8))'A, (Y-XB ) (6.1.5)

where )\ 1is any solution of Ke A= f,
o

Theorem 4-1.1 ig established by showing that
cov(g(Y), Y[8,,8)) =0

for all g(Y) such that E[g(Y)|8,0) =0 Y B eR", 6 ¢ F, and
using the theorem on minimum variance estimation given in Rao (1973,

p. 317).

8 is LMVUE of its expected value
()

which 18 a linear functions of ©. Thus (4.1.5) characterizes all

Note 1: For any 1, 'R
flote 2 By

LMVUE's of linear functions of 0 at (80,90)-

Note 2: The variance of y as defined in (4.1.5) is

V(y]8,0) = 4(8-8)'X'AVAX(B-8)) + 2 tr AV,AV, (4.1.6)

where A= [ "1‘51 with Ai computed at 00. The variance at

(8,.8,) 1s |

VY[R, 8) = 2 \'K A= 2 £ § (4.1.7)
o

()
o

4.3




vhere K. is any g-inverse of K_ .
0, Oo

Note 3: The BLUE of XB at 6 is

X8 =P Y, (4.1.8)

Substituting # for Bo in (4.1.5) we have

Y, = Ak - Yo, M)*(mivi)(nve Mty (4.1.9)
o]

3.90 o

where M =1 - X(x'x)'x'. and C+ is Moore Penrose inverse of C
(see Rao and Mitra, 1972). The statistic ;1 which is independent
of the apriori value of B 1s an alternative estimator of f's but

it may not be unbiased for f'g.

Note 4: Theorem 4.1.1 can be stated in a different form as
follows. If f'e 1is unbiasedly estimable then its LMVUE at Bys®,

is f'9 where § 1is any solution of the consistent equation

K, 6 = k (4.1.10)
ec Bo’eo

Note 5: Let @ (i.e., each component of 6) be estimable in

which case l% is nonsingular and the solution of (4.1.10) is
. o

-

6 = Rh:hfoooo' Let él be a solution of Xg = PeoY. We may use

§1.61 the IMVUE of 8,0 as initial values and obtain second stage
estimates 62 and B, of @ and g as solutions of

A =T ~ ~ QY. .
Kble kel.el. Xg = Pel (4.1.11)

4.4
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The process may be repeated and if the solutions converge they

satisfy the equations

K - k - =
00 B,0° X8 POY

: The solution (é.é) of (4.1.12) may be called IMVUE (iterated

of (8,8) are not known.

4.2 Invariant Fstimation
Let us restrict the class of estimators to invariant unbiased

(IU) estimators, i.e., estimators g(Y) such that
g(Y + XB) = g(Y) ¥ @

E[g(Y)|8,08] = £'0

invensamt
and find the locally minimum varlanceAunbinsed estimator (LMVIUE).

Let

M=I-P, P= XXX

LCMOERCIU AN EINAD
= (e [VH(I-P )V, (1-P vy, ))
i Lt AR
‘ + + ' + o
hp(¥,0) = (x' 0w g0’V 0 g0ty o gn Yo goty)

(Ve (P v, (e pvely, L ¥Vl v (pveiv!

Theorem 4.2.1.

(1) £'0 1a invariantly unbiasedly estimable 1ff

4.5

minimum variance unbiased estimator) of (8,8). The exact properties

(4.1.12)

(4.2.1)

(4.2.2)

e




feS
(H _(6)) (4.2.3)
for any choice of 8 such that Vg  1s nonsingular.

(11) The LMVIUE of £'8 at 90 is

A-A'
Y hI(Y,eo) (4.2.4)

A i f =
where is any solution o [HUI(eoﬂm f.

The results of Theorem 4.2.1 are obtained by transforming the

model Y = XB + € to a model involving the maximal invariant of Y,
t = B'Y = B'e = €, (4.2.5)

where B = x‘. which 1s independent of B8, and applying Theorem 4,1.1.

Note 1: Theorem 4.2.1 can be stated in a different form as
follows. If f£'@ {s invariantly unbiasedly estimable, then its

LMVIUE at 60 is £'0  where O is a solution of

IHUI(GO)]G = hI(Y.eo) (4.2.6)

where HUI(e) and hI(Y,G) are defined in (4.2.2).

Note 2: If @ admits invariant unbiased estimation, then as in
Note 5 following Theorem 4.1.1 we may obtain IMVIUE of (R,0) as the solution

of

Xg = PeY (4.2.7)

[n”I(e)]e = hI(Y,e).

4‘6
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5. MINIMUM NORM QUADRATIC ESTIMATION
(MINQE-THEORY)

5.0 MINQE-principle

In Section 4 we assumed normal distribution for the random vector
Y in the linear model and obtained the LMVUE of linear functions of
variance components without imposing any restriction on the estimating
function. However, we found that the estimators were all quadratic.
In the present section we shall not make any distributional assumptiomns
but confine our attention to the class of quadratic estimators and lay

down some principles for deriving optimum estimators.

Natural estimator. Consider a general random effects linear model

Y=X8+U ¢ +...4U ¢ =XB8+7U
8 p‘v B+ U

191

E(¢;) = 0, E(¢,0]) = 6,G,, E(¢1¢j) = 0, 1#j. (5.0.1)

When 01 is known, a natural estimator of 6i is

-~

- M = -
°1 ¢i Gi¢1 *-rl, r, R(Gi) (5.0.2)

which has nice properties such as uniformly minimum variance under
mild conditions on the moments of ¢i. Then a natural estimator of

£'0, a linear function of 6, is

£'9 = I(£,/x,)6] GJo, = ¢'N¢ (say). (5.0.3)

Given a model of the form (5.0.2) and apriori values ay of 91, we

can by a suitable transformation of ¢i

1/2 g
¢ T oy Bytys BB =Gy

5.1




Write the model in the form

-

Y = X8 + 0101*...+UPOP

1/2
where U1 Uiu Bi

E(¢;) = 0, E(d.0)) = °1Ir1' E(44¢y) = 0 (5.0.4)

and the apriori values of 61 are all equal to unity. We assume that
such a transformation is made before analysis of data. In terms of the

model (5.0.4), a natural estimator of 8i is 0;01/ri.

It is not clear how the concept of a natural estimator can be

extended to the general model

Y = X8+ Up, E(¢¢') = 01F1+...+0pl-‘p

- L ' -
D(Y) GIUFIU +...+OPUFPU 01V1+...+OPVP (5.0.5)

where ¢ may not have the structure defined in (5.0.4). However, using

1/

prior values °1""'°p we may transform ¢ to F 20 where

Few a1F1+...+onP. and U to UFllz. If (5.0.5) represents the model
after such a transformation of U and ¢ (6@ and V1 remain unchanged)
we may formally extend the concept of a natural estimator, although we

may not claim any optimal properties as in the case when ¢ has the

structure of a random effects model.

"'Definition 5.0.1. Under the general model (5.0.5), a natural

estimator of y = f'0 1is

Y =T ue'Fe=e'N (5.0.6)

5.2
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where N = [ uiFi. U= (ul,....up)' is a solution of Hu = f,

H= (tr Fil’j).

A more general definition of a natural estimator in terms of
€ when the model 18 Y = XB + € without specifying any structure

for € 1is given in Section 5.},

MINQE-theory. Consider the general model (5.0.5) and a quadratic
estimator y = Y'AY of f'6. Now
ay o (8 ' U'AU  U'AX, ¢
while the natural estimator is ¢'N¢ as defined in (5.0.6). The

difference between Y'AY and ¢'N¢ 1is

¢,' U'AU-N U'AX, ,¢

The minimum norm quadratic estimator (MINQE) is the one obtained by

minimizing an appropriately chosen norm of the matrix of the quadratic

form in (5.0.8)

D11 P2

Dyy Do

U'AU-N U'AX

X'AU X'AX

'. (5.0.9)

We shall consider mainly two kinds of norms, one a simple Fuclidean

norm

tr D11D11 + 2 tr DIZDZI + tr 022022 (5.0.10)

and another a weighted Euclidean norm

tr D11"°11" + 2 tr DIZKD?I" * tr 022K022K (5.0.11)

pevera K

per R

L A




where W and K are n.n.d. matrices. The norm (5.0.11) gives
different weights to ¢ and B 1in the quadratic form (5.0.8).
We impose other restrictions on A (and indicate the MINQE so

obtainad by adding a symbol in brackets) such as Y'AY

(a) 1s unbiased: MINQE(U)

(b) 1s invariant for translation in g: MINQE(I)
(c) satisfies both (a) and (b): MINQE(U, I)

(d) 1s unbiased non-negative definite: MINQE(U, D)

(e) 1s invariant non-negative definite: MINQE(I, D), etc.

The properties of the estimator strongly depend on the norm
chosen and the restrictions imposed. We also obtain a series of
IMINQE's (iterated MINQE's), by repeatedly solving the MINQE equations
using the solutions at any stage as prior values for transforming the

model as indicated below equation (5.0.5).

S.1 MINQE(U, I)
We consider the class of invariant unbiased quadratic estimators,

i.e., of the form Y'AY where A belongs to the class

CUI

= (At AX =0, tr AV, = f

g = f 1=1,...,p) (5.1.1)

where X and V, are as defined for the general model (5.0.5). We

i
use the following notations and assumptions

’ - Ul
T = (Vu + Xx') > 0, Va - ulv +...+upr uu

1

Py = x(x'T'lx)'x'r”l, Ry = (I - R

5.4
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where o is a prior value of 6.

Theorem 5.1.1. If CSI is not empty, then under the Euclidean

norm (5.0.10), the MINQE(U, I) of f'6 is
= - [} = =1 ' -1
Y I XiY AIY' Ai T RTV:I.RTT
where A = (Al....,lp)' is any solution of

(1, ( a)]r = f

where %I(c) is the matrix (tr Aiv )%

3

Proof. Under the conditions (5.1.1), the square of the

Euclidean norm in (5.0.10) becomes
||U‘AD»N112 = tr(U'AUU'AU) - 2 tr NU'AU + tr NN.

But N= I uiri-btr NU'AU = I uifi so that we need minimize only

the expression
f
tr AVaAVG tr ATAT for A ¢ cUI'
It is easy to show that (5.1.5) is minimized at A, such that
tr DTAT = 0V D ¢ 0
ur:
0 = R' ' -
DcCUI =) D RT E &r. tr E R’l‘vik'r 0 for arbitrary E..

Then

T AT = £ ARV RY

(5.1.2)

(5.1.3)

(5.1.4)

(5.1.5)

(5.1.6)




which gives the solution (5.1.3).

The equation for )\ 1is obtained

by expressing the condition of unbiasedness. Note that [H"I(a)]x = f {8

consistent if C;I is not empty. Also the solution (5.1.2) is independent
of N.

Note 1: MINQE(U, I)'s are additive.

Note 2: An alternative expression for ; given in (5.1.3) is

v ! - + +
y=1 XiY AiY' Ai (HVAM) Vi(MVaH)

(5.1.7)
where M =1 - XX+.
Note 3: When Va is nonsingular, T can be replaced by Vcl in
Theorem 5.1.1. Then
Y = I AY'AY, A, =V IR vr vyl (5.1.8)
¥ > B i o RVQ il\!a a ' b
Note 4: If Y 41s normally distributed, MINQE(U, I) is LMVUE of
£'0 at values of 0 where [ eivi is proportional to Va. (See
Theorem 4.1.1).
Note 5: If in (5.1.4) we use the weighted Eucli{dean norm (5.0.11)
[u'Au-N||? = tr(U'AU-N) W(U'AU-N)W (5.1.9)
where W 4s p.d., the solution may not be independent of N. The
expression (5.1.9) can be written as
tr AGAG - 2 tr AH + tr NWN (5.1.10)

where G = UWU' and H = UWWU'. If G {is nonsingular, then the

mipimum of (5.1.10) is attained at

5.6
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= ¢ Y A,RV.R' + RHR')G ! (5.1.11)

A feie T e

*

where Ai are determined from the equations

tr A*Vi = fi’ i=1,...,p.

Note 6: It is seen from (5.1.2) that the estimate of f'6

can be written in the form f'6 where 8 is a solution of

[y, (@]6 = h (¥,a) (5.1.12)
where the i-th element of hI(Y,a) is

(] - (i ! 1'1
) A1Y Y'T RTV1RTT Y (5.1.13)

and HG(U.I) is as defined in (5.1.3). If each component of 6
admits invariant unbiased estimation then HG(U,I) is non-singular

and the MINQE(U, I) of 6 is

6= [HUI(a)]'lhI(Y,a) ‘ (5.1.14)

Note 7: The computation of MINQE(U, I) of 6 involves the use
of a a _  prior value o 8., If we have i0 prior information on 6,
there are two possibilities. We may take a as a vector with all its
elements as unity. An alternative is to choose some «, compute

(5.1.14), consider it (say 61) as an apriori value of 6 and repeat

a

the computation of (5.1.14). The second round value, say 92 is an

appropriate estimate of 0, which may be better than 51 if the initial

~

choice a 18 very much different from 91.

‘We may repeat the process and obtain 53 choosing 92 as an

-
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anriorl value and:uinh The limiting value which satisfies the
{

equation

[H,y (18 = hy(Y,0)

is the IMINQE(U, I), the jrerated MINQE(U, I), which is the same
as IMVIUE defined in (4.2.7). It is shown in Section 6 that the
equation (5.1.15) 4is the restricted maximum likelihood (RML)

equation considered by Patterson and Thompson (1975).

5.2 H;NQB(U)

We drop invariance and consider only unbiasedness, as in
problems such as those mentioned by Focke and Dewess (1972) where
the condition for invariance does not hold. In such problems where
invariance condition is not used, it is advisable to use an apriori
value Bo of B and change Y to Y - XBO and B to (B-Bo)
and work with the transformed model in addition to the transformation
indicated in (5.0.5). The class of unbiased estimators of f'6 is

defined by

Cf = {A: X'AK =0, trAV, =€, 1=1,..,p)

i - g

where X and vi are as in the general model (5.0.5).

Ihenrer 5.2.1. Let | A UU' be p.d. If C; is not empty

then the MII'QE(U) under Euclidean norm (5.0.10) is

- 1y~1 & v -3
Y, Ai (Va + XX') (Vv P. V.P )(V“ + XX')

YEEATA 1"y "5y
a o

i
vhere )\ = (Ai....,xp)' is any solution of

- [H“(n)]l - f

(5.1,15)

(5.2.1)

(5.2.2)

(5.2.3)




vhere HU(G) is the matrix (tr Aiv Vs

b

Proof. Under (5.0.10) we have to minimize

||u'Au—N||2 + 2HU'AXH2

which, using (5.2.1), reduces to

'
tr AV AV + 2 tr AV AXX = ¢r AV A(V_ + 2XX')
a a a a
= tr ATAT, T =V + XX'.

The expression (5.2.4) attains a minimum at A, 1iff
0
trDTAT-OVDcQU.

Observing that D € Qg =D = E - PT.EP and following the

T
arguments of Theorem 5.1.1, the expression for A, 1s obtained
as in (5.2.2), where PT is replaced by the equivalent expression

Pv .
[\]
Note 1: We shall consider a few alternatives to the simple
Euclidean norm. Focke and Dewess (1972) give different weights to

the two terms in (5.2.3) as in (5.0.11). Choosing W =1 and

K = £2, (5.2.4) becomes
_ " i .
tr ANGAVG~+ 2r°tr A\%AXX .

The constant r2 determine the relative weights to be attached to
B and ¢. The solution obtained by minimizing (5.2.7) is called

r-MINQE(U) which is the same as (5.2.2) with X replaced by rX.

“ Note 2: The iterated estimates of B and MINQE(U) of 6 are

5.9

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)




solutiona of the equations

|—1 - |-1
X Ve X8 = X Ve Y

[H,(8)16 = hy(¥,0) (5.2.8)

where

by (Y,0) = (Y'Alv.....v'ApY)'. (5.2.9)

Ru(e) and A1 are as defined in Theorem (5.2.8). The solution

of (5.2.8) is represented by IMINQE(U).

5.3 «-MINQE(U)

In (5.2.7) we defined r-MINQE(U) which uses a weighted Euclidean
norm to provide différential wieghts to B and ¢ and also suggested
a translation in Y using a prio? value of 8. Actually we may

consider a transformation which changes

Y Y- X8y B A

where Bo and r2K correspond to apriori mean and dispersion of 8.

Then the Euclidean norm of (5.0.10) becomes

2 2

tr A(VG + r°XKXx') A(V° + r°XKx') (5.3.1)

which may be minimized.

Let us denote the optimal solution in such a case by Ar and
define Ao = 1im Ar as r + e, If Ao exists, we call the
corresponding estimator Y'AOY, the «-MINQE(U). The following theorem

due to Focke and Dewess (1972) establishes the existence of «=-MINQE(U).

5.10
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- (111) «-MINQE(U) is invariant with respect to nonsingular linear »

Theorem 5.3.1. Let U be the set of linear combinations of

vl' cee ,‘“V.p.
(1) «-MINQE(U) exists if Cg is not empty.
(11) Ao is the unique matrix which minimizes tr AVuAVa in

the class C = {A: xxx'AvaM + Mvquxx' =V -PV P, V

oo o€ V}  (5.3.2)

transformation of the model (5.0.5).

Theorem 5.3.1 characterizes =»-MINQE(U) but does not provide the
method of cilculating it. Theorem 5.3.2 gives the formula when V = I,
from which the formula for general V can be derived by a transformation

of the model in view of statement (1ii) of Theorem 5.3.1.

Theorem 5.3.2. Let G = (tr MV,MV,), B = (tr Mvi(xxx')+v ) and

]
c; be not empty. If Vu = I, the »-MINQE(U) of £'6 is y = Y'AY
where
- nwt nwt
A* (XKX') VOM + MVO(XKX ) + HVbH (5.3.8)

V0 = 7 aivi, Vb = 7 bivi
and a = (al....,ap)', b= (bl,...,bp)' satisfy the equations

Gb+2Ba=f, Ga=0. (5.3.9)

Theorem 5.3.3. 1f V_ is p.d. and cg 18 not empty, the =-MINQE(U)

1s obtained by replacing M by (Mvan)+ in (5.3.8).

1/2 -1/2

1/
Bk

Proof. We consider the model V; 200 and

X +V
a

apply the result of Theorem 5.3.2. On simplication the formula stated

5.11
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BRI, Y

T

in Theorem 5.3.3 is obtained.

Note 1: It is interesting to note that »-MINQE(U) is the same if

instead of the sequence rZK, we consider (A + rZK) for any A > 0,

Note 2: «-MINQE(U) coincides with MINQE(U, I) if it exists.

5.4 MINQE Without Unbiasedness

Let us consider the linear model
L T =
Y=X8+¢e, E(ee') 01V1+...+BPVp Vg

Choosing a prior value a of 8, (5.4.1) can be written

Y = XB + Vllze
V] *

4

1/2 € and Vu = qa,V +...+upr. Using the definition

11
(5.0.6) with e, as ¢, a natural estimator f'e 1is

where €y ™ v~
o

1/2

- -1/2
Yopr Voo SV VNN

ELNe, = e;(z xivi*

where \ = (11,....AP)' is chosen such that e ,Ne, 1s unbiased

for f'0, 1.e., )\ satisfies the equation [H(a)]X = f where

. —
H(®) = (er V,,V,,) = (er V] vivalvj).

It 18 seen that (5.4.3) 18 IMVUE of 6 at 6 = a when ¢ 1is
normally distributed. In most of the applications the natural
estimator 1s independent of a, which is an ideal situation.

The MINQE of f'0 is Y'AY where A 1is chosen to minimize

(5.4.1)

(5.4.2)

(5.4.3)

(5.4.4)




e (5.4.5)

In Sections 5.1 - 5.3 we imposed the condition of unbiaseines:
on Y'AY. We withdraw this condition but consider some alternaii.

restrictions on the symmetric matrix A as defined by the follovi .

classes,
C- {A} (5.4

CPU = {A: X'AX = 0}

C, = {A: AX = Q)

I (5.4.8)

It 1s seen that when Aefpu. the bias in the estimator VY'AY i«

independent of the location parameter B8, and is thus partially
unbiased (PU). The MINOE's obtaimed subject to the restrictions
(5.4.6)-(5.4.8) are represented by MINQE, MINQE(PU), MINOE(T)
respectively. The concept of MINQE(I) is due to Poduri Rao and

Chaubey (1978).

Theorem 5.4.1. Consider the model (5.0.5) and let

o 7 h {. Pur - J AV ‘he
Vc 01V1+...+ﬂp\p be p.d rther, 1let W= I ‘iVi where

A= (Xl,...,kp)' satisfies the equation [H(a)]A = f, where

H(a) = (tr V;1V1V;1V1). Then under the Fuclidean norm in

(5.4.5), the optimal matrix A, providing MINQE's are as follows.

(1) MINGE: A, = (v + XXy v+ xx)”! (5.4.9)

” = r -1 L 11
(11) MINQE(PU): A (\“ + XX') (W Paw?a\(va + XX

- P = X(X'V x)“x’v'l (5.4.10)
o o

N
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(111) MINQE(D): A, = O 0 "wow w7,

-

-1 -1
v oR(T - BT - Pa)Vu
wvhere M = I - X(X'X) X'.

Froof. Under Euclidean norm, the square of (5.4.5) is

tr(V;/ZAVl/Z—N)z + 2 tr(X'AV_AX) + tr(X'AX) 2,

Without any restriction on A, the minimum of (5.4.12) is attained

at A, iff

R ¥ 1 N T T L . N
er (v ANV TEmv TRV T 4 2 er (XTALY BX) + tr(X'AXX'BX) = 0

for any symmetric matrix B, Then A, satisfies the equation

T BT TR Y O T S SR
VT AN TR T 4 XA+ VAKX + XXTALXX! = 0

V1/2

1/2
a a

NV =3I ) Vi =W

Al Al =
or (v, + XXDA(V + XX') :
Ay = (v +xx) e+ xx)T

- a a

which i8 the matrix given in (5.4.9;.

If A 1is subject to the restriction X'AX = 0, then (5.4.13)

must hold when B 1is replaced by B - P;BPQ where PGl is

(5.4.11)

(5.4.12)

(5.4.13)

defined in (5.4.10). Then arguing as above and noting that PGV‘ = VQP;,

tha equation for A, 1is

Y = & '
(V4 XXDAV, + XX') = LA (Vg = P V.P)

5.14
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5
b
j
:
s
]

or Ay = V +xxDIw - PR (v + xx)

which is the matrix given in (5.4.10).

If A 1is subject to the condition AX = 0, then (5.4.13)
must hold when B 1is replaced by MBM where M = I - P, Then A

satisfies the equation
OV M)A, (MV M) = M

+ +
or Ay = (MV M) WM M)

-1 - -1
= V(I - POW(I - POV,

which is the matrix given in (5.4.11).

Note 1: MINQE in (5.4.9) and MINQE(I) in (5.4.11) are

automatically non-negative, while MINQE(PU) may not be.

Note 2: The MINQE(I) of f£'6 given in (5.4.11) can be written

as f'6 where 0 is a solution of
[H(x)]® = hI(Y,a)
where H(® 1is as defined in (5.4.4) and the i-th element of
h_(Y,a) 1is
I
vl -ryv,a-revly
(V] a’ 1 ¢« a °

The equation (5.4.14) is consistent. If 0 1is identifiable then
H(a) 18 non-singular, in which case 6 = [H(a)]-lha(Y,I). This

form of the solution enab!~~ us to obtain IMINQE(I), i.e., iterated

-

(5.4.14)

(5.4.15)




MINQE(I), by writing 61 = [u(a)]-lha(Y.I) and obtaining a second

stage estimate 8 with « replaced by 61. The limiting solution,

i
if the process converges, satisfies the equation ‘

[(H(®)]e = hI(Y.e) (5.4.16) ~ £

which is shown to be the maximum likelihood equation in Section 6. .

5.5 MINQE(D)-Non-negative Definite Estimator

In the general variance components model, we admitted the
posssibility of some of the parameters being negative. But there
are cases such as the random effects model where the variance components
are non-negative and it may be desirable to have non-negative estimators
for them.

The estimators considered so far except those in Section 5.4

can assume negative values although the parametric function is non-

negative. In this section we explore the possibility of obtaining

unbiased quadratic estimators Y = Y'AY with A > 0 of parametric

functions f'6 which are non-negative in 8eF for a general model.

A MINQE in this class is denoted by MINQE(U, D), where D stands for

U p—— e e ¥

non-negative definiteness ¢f the quadratic estimator.

The following lemma characterizes the nature of the matrix A if

-~

Y has to be unbiﬁéed and non-negative.

Lemma 5.5.1. A non-negative and unbiased quadratic estimator

Y'AY satisfies the invariance condition, i.e., AX = Q.

Proof. Unbiasednessz)X'AX = O=HAX = 0 saince A > 0.

-

-In view of Lemma 5.5.1 we need only consider the class of matrices




Cf ={A: A20, AX=0, tr AV, =f, 1=1,...,p}.  (5.5.1)

Further, because of invariance we can work with a transformed model

t=2'Y=¢

= ' -
E(t) = 0, E(tt'") 6181+...+6p8p (5.5.2)
where Z = X" (with full rank say 8) and Bi = z'viz, O SRERR A
We need consider quadratic estimators Yy = t'Ct where C balongs to
the class
£
Cp = {C: €20, trcCB =f£1}. (5.5.3)
Lemma 5.5.2. C;D is not empty iff
f ¢ convex span {q(b): beR™} (5.5.4)
where q(b) = (b'MVle,....b'HVpr)'.
Note: In terms of the model (5.5.2), the condition (5.5.4) is
f € convex span {q(b), beR®} (5.5.5)
where q(b) = (b'Blb,...,b'pr).
The conditions (5.5.4) and (5.5.5) ane rather complicated, but
simple results can be obtained if we assume vl"”’vp to be n.n.d.
Theorem 5.5.1. Let V1 >0, 1=1,..4,p, V=2£ Vi and V(j) = vmvﬁ

and Bi be as defined in (5.5.2). There exists an n.n.d. aquadratic

unbiased estimator of 9J iff

5.17
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S S
SBOE SR, SMv M ¢ SO ()
& s(w(j)n):b SOV ROW M) < ROWM). (5.5.6)
3
Note 1: The condition (5.5.6) can also be expressed as : ;
(I -GV, (I -6)#0 (5.5.7)

where G 1is the projection operator onto the space generated by the

columns of the compound matrix

(X: Vlz St VJ__1 § vj+l: v 3 N Vs (5.5.8)

Note 2: If S(Vl) 2 SM), then S(MVIH) b 3(MV1M) for all i

’

in which case,application of Theorem 5.5.1 shows that at most 01 is

non-negatively estimable.

Note 3: If S(V]) D S(M) and S(VZ)D S(M), then none of the
single components are non-negatively estimable.
Note 4: (LaMotte, 1973.) If V(j) > 0, then 61 is not non-

negatively estimable. Further, 1if Vj > 0, then 91’ i#j 1s not

non-negatively estimable.
However, let us assume that CED« is not empty for a given f and

estimate f'@ by MINQE principle. For this purpose we have to minimize

o
[|A]]® = tr AVAV when ACCSD. (5.5.9)
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This appears to be a difficult problem in the general case. Of course,

if MINQE(U, I) turns out to be a non-negative estimator in any given
situation it is automatically MINQE(U, D). It may also be noted that 1f
sp{MVIH,....MVPM} is a quadratic subspace with respect to (MVM)+,
then the MINQE(U, I) of f'6 1is n.n.d. iff C;D is not empty.

Since C;D is a convex set, we proceed as follows to solve pt

the problem (5.5.9). The minimum is attained at A, iff
f
tr BVAV > tr A VALV Y BeCUD (5.5.10)

or writing B = A, + D, the condition (5.5.12) becomes

tr DVA,V > 0 V DeD (5.5.11)
D={D: DX=0, A, +D>0, tr v, =0, 1 =1,...,p}. (5.5.12)

A general solution for (5.5.11) cannot be explicitly written down, but
the formula will be useful in examining whether any guessed solution

for A, provides a MINQE(U, D). We shall consider some special cases.

Theorem 5.5.2. Let vi >0,1=1,...,p, and e1

the condition (5.5.9) i{s satisfied. Then the MINQE(U, D) of 61 is

be estimable, 1.e.,

) 1 & = -
ej = }-{'(TjT\ AjY’ Aj ((1 G)V

+
j(I - 8] (5.5.13)
where G 1s the projection operator onto the space generated by the
columns of (X, V]....,Vj_l, V1+1,...,Vp).

An alternative approach to the problem (5.5.9) based on standard

methods of convex programming le provided by Pu kelsheim (1977).
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We define the functional

8(B) = min (11a]]% - <a,B>) (5.5.14)

AchI

where ||A||2 = tr AVAV and <A,B)> = tr AVBV with V > 0, and

call the problem

sup g(B) (5.5.15)
B>0

as the dual optimization problem.

Lemma 5.5.3. Let A*eCED and B, > 0 be such that

Ha 1% = gcs,) (5.5.16)

Then:
(1) A, and B, are optimal solutions of (5.5.9) and (5.5.15).

(11) ¢A,,B,> = 0. (5.5.17)

Note: g(B) 1is bounded above since
’
[1a,11° > 2(B) for a11 B, (5.5.18)

For obtaining a satisfactory solution to the problem (5.5.9) we
need an explicit expression for g(B). We obtain this in terms of A

where Y'AY d{s the MINQE(U, 1) of £'6. Let us note that any matrix

B(=B') can be decomposed in terms of symmetric matrices
B =1+ (8 - B

) f
such that Boccgt and <'B‘, R-B D> = 0. The matrix BO is simplv the
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{
projection of B onto the subspace Cgl in the space of symmetric
matrices with inner product € +,*> as defined in (5.5.15). We note

that by construction A 1is such that

<A, Bo> = (0 for any given B.

Theorem 5.5.3. Let Y'AY be MINQE(U, I) of f'6 and Cﬁn be

not empty. Then:

W g® = [1Al|* -<ip> - F [[2°]]?

(11) B, 1is optimal [i.e., maximizes g(B)] iff

*
= '3 .0 = 140
A+3B >0, €CA+5B,, B> =0

0

1
B,

(111) A, = A+ 3

is a solution to (5.5.9), 1.e., provides MINQE(U, D) of

£'6 and <A,B, > =0.

The results of Theorem 5.5.3 are still complicated. A sufficient

condition for optimality of A, 1is given in Theorem 5.5.4.

Theorem 5.5.4. If there exists a B > 0 such that n%%0 and

A*-&~—A=%——-2-n°3_0
[187]1

then A, 1s an optimal solution of (5.5.11).

Proof. Check optimaiity by the condition (5.5.16) noting that

(5.5.19)

(5.5.20)

(5.5.21)

(5.5.22)

el o e
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6. MAXIMUM LIKELIHOOD ESTIMATION

; 6.1 The General Model

We consider the general GM model

Y=XB + ¢

(6.1.1)

1 8

O A ey s

'Y =0,V +... 46 V =V
E(ec') 1 o

and discuss the maximum likelihood estimation of 6 under the

assumption

Y - N (X8,V,), geR™, o¢F. (6.1.2)

We assume that V is p.d. for ¥ 6¢F.

6

Harville (1977) has given a review of the ML estimation of 6
describing the contributions made by Anderson (1973), Hartley and
Rao (1967), Henderson‘(1977), Patterson and Thompson (1975), Miller
(1977, 1979) and others. We discuss these methods and make some

additional comments.

The log likelihood of the unknown parameters (B,6) is

proportional to
£(8,6,Y) = - loa[v,| - (¥-X8)' V (¥-xp). (6.1.3)

The proper ML estimator of (8,0) is a value (8,8) such that

2(B,6,Y) = sup 2(8,0,Y). (6.1.4)
g,0¢eF

Such an estimator does not exist in the important case considered
by Focke and Dewess (1972). In the simple version of their problem

there are two random variables

-

6‘1
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Y. =u+e., Y.=u+e

1 1 2 2
2 2 2 2 =
E(el) 0y E(ez) Tos E(clez) 0. (6.1.5)
The likelihood based on Y1 and Y2 is
(Yl—u)2 (Yz-u)2

- log o, - log o, - - (6.1.6)

1 2 2 2

201 20?

which can be made arbitrarily large by choosing u = Yl and letting

01 + 0, so that no proper MLE exists. The ML equations obtained equating

the derivatives of (6.1.6) to zero are

o
ad

)

“

2 1 1
oZ = (-w?, o= (vt wG ) -
i o

Q
[N XY

Q
NN

which imply 01 = 0y Thus the ML approach fails to provide

acceptable estimators. However, in the example (6.1.5), all the

parameters are identifiable and MINQE(U) of oi and og exist.

2

2 in the model

A similar problem arises in estimating oi and ©

Y=XB+Xy+¢€e where F(yy') = oilm, F(ee') = cgrn and
F(ey') = 0.
It 18 well knowo that ML estimators of variance compounents nre

heavily biased in general and {n some situations considered by Neyman
and Scott (1948), thev are not even consistent. In such cases, the

use of ML estimators for drawing inferences on individual parameters may
lead to gross errors, unless the exact distribution of the M, estimators
1s known. These drawbacks and the computational difficulties involved
in obtaining the ML estimators make the ML method less attractive for

practical applications.

6.2
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6.2 Maximum Likelihood Equations

.-

For 0e¢F such that Ve >0 (i.e., p.d.), the likelihood of

(8,0) 1is

£(8,0,Y) = - 1og|Vy| - (v-x8)'V 1 (¥-xp).

Taking derivatives of (6.2.1) w.r.t. to B and 8, and equating

i
them to zero we get the ML equations

i - !
X Ve XB = X Ve Y

-1 i ' &
tr V3V, = (Y-XB) velvive (Y-X8)

b E_ T B
Substituting for B8 in (6.2.3) from (6.2.2), the equations become

S S TR |
XB = PY, Py = X(X'Vg'X)X'Vy

[H(B)]O = hI(Y,O)

=]

where H(8) = (tr V V.V, V ) 1is the matrix defined in (5.4.4) and

16
the i~th element of hI(Y.e) is

Y'(I - P) v Ly v ter - Pg)Y

which 18 the same a= the expression defined in (5.4.15).

We make a few comments on the equations (6.2.4) and (6.2.5).

(1) The ML equation (6.2.5) is the same as that for IMINOE(T)
given in (5.4.15).
(11) The oripinal 1ikelihood equation (6.2.3) is unbiased while

the equaticn (0.7.5) which provides a direct estimate of

(6.2.1)

(6.2.2)

(6.2.3)

(6.2.4)

(6.2.5)

(6.2.6)
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1s not so in the sense

E[hI(Y.e)] # [H(8)]0. (6.2.6)

An alternative to the equation (6.2.5) is the one chtained

by equating hI(Y’e) to its expectation
hI(Y,e) = E[hI(Y,e)l - [HUI(G)JG (6.2.7)

which is the restricted ML (RML) equation suggested by
Patterson and Thompson (1975).
(111) There may be no solution to (6.2.5) in the admissible set
F to which 6 belongs. This may happen when the supremum
of the likelihood is attained at a boundary point of F,
(iv) It is interesting to note that the ML estimate of 0 {s
invariant for translation of Y by Xa for any a, i.e.,
the MLE is a function of the maximal invariant B'Y of Y

where B = X*.

Suppose 6 1in the model (6.1.1) is identifiable on

the basis of distribution of Y in the sense: |

Foo 40V = GIV 4, 40" -~ 0] =0 for a1t §, "
o AP S 9 v % FOE |
L AP g vo 1torar'y dndependent.  Rut $t mov o {

'

as in the case of the example of Focke and Dewess (1972),
that 6 1is no longer identifiable when we consider only
the distribution of B'Y, the maximal invariant of Y.

Such a situation arises when R'ViB are linearly dependent
while Vi are not. In such cases the ML method fs not
applicable while MINQE(U) developed in Section 5.2 can be
used. Thus, the Invariance property of MLE limits the

gcope of application of the ML method.




(v) Computational algorithms: The equation (6.2.5) for the

estimation of 6 1s, in general, very complicated and

no closed form solution is possible. One has to adopt
iterative procedures. Harville (1977) has reviewed some if

of the existing methods. ;

(a) If 6, 4s the k-th approximation to the solution of L

k .
(6.2.5), then the (k+1)-th approximation is

- a —1 ~
By = RGO 0 (1,8, (6.2.8)

as suggested for IMINQE(I), provided 6 is identifiable,
on—the—basis—of—the—manimaliavariant—ef—¥. Othervise,
1 the H matrix in (6.2.5) is not invertible. Iterative
; procedure of the type (6.2.8) is mentioned by Anderson
?i (1973), Harville (1969), LaMotte (1973) and Rao (1972)

§ in different contexts. However, it is not known whether
the procedure (6.2.8) converges and provides a solution

at which supremum of the likelihood is attained.

(b) Hartley and Rao (1967), Henderson (1977) and Harville
(1977) proposed algorithms suitable for the special case
when one of the Vi is an identity matrix (or at least

non-singular). An extension of their method for the general

case 18 to obtain the (k+l)-th approximation of the i-th

component of 6 as

Y' (1-P» )'vilv vil(r-p. )y §

6, '6,'16 6 .
1001 " O e : ) \
2 tr Vélv1 i

k

6

1 =1,.00eD:

In the special case when V1 are non-negative definite




and the initial ¢, are chosen as non-negative, the

i

successive approximations of 6 using the algorithm

i
(6.2.9) stay non-negative. This may be a ''good property"

of the algorithm, but it is not clear what happens when
the likelihood equation (6.2.5) does not have a solution
in the admissible region.

(c) Hemmerle and Hartley (1973) and Goodnight and Hemmerle (1978)

developed the method of W transformation for solving the
ML equations. Miller (1979) has given a different approach.
Possibilities of using the variable-metric algorithms of
Davidson-Fletcher-Powell described by Powell (1970) are
mentioned by Harville (1977). As it stands, further
research is necessary for finding a satisfactory method
of solving the equation (6.2.5) and ensuring that the
solution provides a maximum of the likelihood.
i
6.3 Restricted Maximum Likelihood Equation

As observed earlier the ML equation (6.2.5) is not unbiased, 1i.e.,

E[hy(Y,8] # [H(8)]6. (6.3.1)

If we replace ithe equation (6.2.5) by

hI(Y’e) e E[hl (er)]

= [HUI(e)]e (6.3.2)

we obtain the IMINQE(U,I) defined in (5.1.14), which is the same as
IMVIUE defined in (4.2.7).

The equation (6.3.2) is obtained by Patterson and Thompson (1975)
by m;xfmizing the l1ikelihood of O based on T'Y, where T 1is any

choice of x*. which is the maximal invarfant of Y. Now

" 6.6




4+ e bR G ki

_2(8,T'Y) = - 1ong'veT| - Y'T(T'VeT)_lT'Y. (6.3.3)
Differentiating (5.3.3) w.r.t. 9i we obtain the RML (restricted
ML) equation
' - (] (] -1T' ] =1
tr (T(T VGT) T vi) = Y'T(T VeT) viT(T VeT) TrY (6.3.4)

s Sl S o

Using the identity (Rao, 1973, p. 77)

ey el
T(T VBT) T Ve Ve X(X VO X)X Ve
-
- vl - ) (6.3.5)
the equation (6.3.4) becomes
erVoL(I-P)v.) = Y'vol(-p v, (1-pyvly (6.3.6)
2] ; Cld 8 671 8’0 ey

fom LoeeanDd

which 18 independent of the choice of T = XJ' used in the construction

of the maximal invariant of Y. It is easy to see that (6.3.6) can be

written as

[HUI(O)]e = hI(Y.G) (6.3.7)
which is the equation (6.3.2).

(1) Both ML and RML estimates depend on the maximal invariant
T'Y of Y. Both the methods are not applicable when 8
is not identifiable on the basis of T'Y.
(11) The bias in RMLE may not be as heavy as in MLE and may be more
useful as point estimators.
(}1;) The solution of (6.3.7) may not lie in the admissible set

of 0 as in the case of the ML equation.

. 6.7




(iv) If ) is the k~th approximation, then the (k+1)-th

k

approximation can be obtained as

. -1
0 « [Ka (U,I)] "ha (Y,I).
k+1 dk 0k

It 18 not known whether the process converges and yields
a solution which maximizes the marginal likelihood.
(v) Another algorithm for RMLE similar to (6.2.9) is to compute
the (k+1)-th approximation to the i-th component of 6 as
YUI-F )vglvivgl(l—ré )Y
k k k k

tr vgl(l-ré Vv
k k

Lok " Yk

D>

i

It 18 seen that both ML and RML estimators can be obtained as
iterated MINQE's, MLE being IMINQE(I) defined in (5.4.16) and RMLE
being IMINQE(U, I) defined in (5.1.14). There are other iterated
MINQE's which can be used in cases where ML and RML methods are not

applicable.

It has been remarked by various authors that MINQE involves
heavy computations, requiring the inversion of large matrices. This
‘argument is put forward apalinst the use of MINQE. These quthors
overlook the fact thot inversion of larpe matrices depend on the
inversion of smaller order matrices in special cases. For instance,

if Ve is of the form (T + UDU'), then {t {s well known that

vgl -1 - UU'U + n")'lu'

which can be used to compute v;‘ 1f the matrix (U'U + n") is

comparatively of a smaller order than VO' Tt mav be noted that the

1

computational complevity the same order for MINOF and MLE, RMLE,.

6.8

(6.3.8) L4

(6.3.9)

(6.3.10)




When we hpvo good prior information MINQE's should be better than

MLE's or RMLRE's.
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